
Java Types and Enums

Nathaniel Osgood

MIT 15.879

April 25, 2012

Types in Java

• Types tell you the class of values from which a
variable is drawn

• In Java we specify types for

– Parameters

– Variables

– Return values

– Class Fields

• Typically, we encode information described by
elements of one or more different types

Types & Legal Operations

• For a given type, only certain “operators” can be
used e.g.

– e.g. a double precision value can be divided,
multiplied, turned into a String etc.

– A boolean can be tested for truthhood, turned into a
String, etc.

– A (reference to a) string can be used to

• Extract prefixes or suffixes, find the length, concatenated,
etc.

– An enum’s values can be turned turned into a String,
converted to integer, etc.

Java Primitive Types

• These are built-in to the Java language

• Primitive types in Java are the following
– boolean

– double

– short (small integer)

– int

– char

– byte

– long

– float

Non-Primitive Types

• Most types we used are not primitive types

• These are defined either

– In our code

– In the standard Java libraries

Why Types?
• Like specifying dimensions for an object (e.g.

L, L3/T), specifying types lets us

– Know what we’re dealing with (so we know what
to do with it)

– Avoid making a silly mistake

• e.g. attempting to divide a number by a (reference to) a
Person

• Absent types, it is likely that these mistakes wouldn’t be
identified until runtime
– If we don’t happen to test that portion of the program, we

won’t be aware of the error

• With types, we can discover these errors when we are
building the program -- during our “Build”

Type Coercion (“Casting”): Why

• Sometimes we have something that is a
member of one type, but that can be logically
converted to another type

• Examples:
– We have a double-precision value and we wish to

convert it instead to an integer (by dropping
fractional component)

– We have an integer (or a double, char, boolean,
etc.) and wish to convert it to a string

– (Subtyping) We have an ActiveObject that we
know is a Person and wish to treat it as a Person

Type Coercion (“Casting”): How

• To “cast” a value v in one type to another
type, the following syntax is used

 (TargetType) v

• Examples:

traceln((String) age)

((Female) item).stateChart.isStateActive(Pregnant)

((int) age) + 1

Parameterized Types
• Sometimes a type (A) is defined in terms of another

type (B)

– This allows the definition of A to take & give back
information specific to type B

• e.g. methods take an A as a “parameter”, or return a B, etc.

• Common examples:

– Collections dependent on type of their content (“set of
double precision values”, “a dictionary mapping strings to
integer”)

– Tuples: “a pair of a character string and integer”

• We say that the type A is “parameterized by” type B

Parameterized Types
• We can describe such “Parameterized Types” using Java

“Generics”; Syntax used: A, e.g. Set<Double>

– Here, the definition of one class can be defined with respect
to an arbitrary number of classes that are provided via “Type
parameters”

• Examples: ArrayList<ClassName>, Set<ClassName>

 This is an array list and set that can hold any type of
classes (as specified by “ClassName”)

• A given use of such a “Generic” class will specify a
specific class name for the type parameter

 e.g. Set<Person>, ArrayList<Double>, List<Deer>

• The definition of the generic can restrict the types that
can be used for the type parameter via constraints

Examples of Parameterized Type (Generics)

• A resource pool depending on what resources
are included
(ResourcePool<MyResourceUnit>)

• An “array list” (like an extensible vector)
depending on the type of the elements
(ArrayList<Person>)

• Hypothetical: A Pair defined in terms of the
first and second element

– Pair< String, Double>

Examples of Type Parameterization
in AnyLogic

• Experiment<MainClass> (and other experiment
classes)

• ResourcePool<ResourceUnit>

• NetworkResourcePool<ResourceUnit>

• ActiveObjectArrayList<ActiveObject>

 Typically used (among other things) for the population
in a main class

• ActiveObjectList<ActiveObject>

Example of a Parameterized Type

Enums: Why
• Often we desire in our models to encode

categorical information

• We can certainly encode such information
using integers (or shorts, etc.)

– e.g.

• Male=0, Female=1

• Province: NL=0,NB=1,PEI=2,QC=3,etc.

• Example using variables

int sex

int province

Problem: This is fragile

– We could easily mistake a value “0” as encoding
either Males or Newfoundland/Labrador

– e.g.

• Reversing order of parameters given to a method, or
entered into a file

• Assigning value for one to another, due to a poorly
named values

• e.g.

 sex=province

Enumerations
• Enumerations help avoid manifest constants, group

common names

• Good for bitwise operations : Consider values that
will allow this rather than combinatorial names

• If language does not support enumerations, use
carefully named global constants

• Leverage compiler checking

• If no class prefix, consider naming enumeration
values with prefix giving type enumeration

• Make default enumeration value illegal

• Always explicitly handle all values

Enums in Java

• Enums let us

– Give names to such information

– Refer to the names in our code

– Convert the names (where necessary) into their
associated values

– Compare names

– Define operations on names

Simplest Examples

• enum Sex { Male, Female };

• enum Province { NL, NB, PEI, QC, ON, MB, SK,
AB, BC};

• Variables using enum:

 Sex sex

 Province province

• Causes error: sex=province

Example of Enums in AnyLogic

A Closer Look

Use of Enums to Delineate Possible Parameter Values

Use of Enums to Delineate Possible Parameter Values

Generating Random Possible Values

The Associated Code…

